
Provided proper attribution is provided, Google hereby grants permission
to reproduce the tables and figures in this paper solely for use in

journalistic or scholarly works.

Referenced by Natural Language Processing with Transformers

Original paper: https://arxiv.org/abs/1706.03762

Attention Is All You Need
Study Notes

Ashish Vaswani∗
Google Brain

avaswani@google.com

Noam Shazeer∗
Google Brain

noam@google.com

Niki Parmar∗
Google Research

nikip@google.com

Jakob Uszkoreit∗
Google Research
usz@google.com

Llion Jones∗
Google Research

llion@google.com

Aidan N. Gomez∗ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser∗
Google Brain

lukaszkaiser@google.com

Illia Polosukhin∗ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex re-
current or convolutional neural networks that include an encoder and
a decoder. The best performing models also connect the encoder and
decoder through an attention mechanism. We propose a new simple
network architecture, the Transformer, based solely on attention mech-
anisms, dispensing with recurrence and convolutions entirely. Experi-
ments on two machine translation tasks show these models to be supe-
rior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014
English-to-German translation task, improving over the existing best re-

∗Equal contribution. Listingorder is random. Jakobproposed replacingRNNswith self-attention
and started the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first
Transformer models and has been crucially involved in every aspect of this work. Noam proposed
scaled dot-product attention,multi-head attention and the parameter-free position representation
and became the other person involved in nearly every detail. Niki designed, implemented, tuned
and evaluated countless model variants in our original codebase and tensor2tensor. Llion also ex-
perimented with novel model variants, was responsible for our initial codebase, and efficient in-
ference and visualizations. Lukasz and Aidan spent countless long days designing various parts
of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and
massively accelerating our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

https://trello.com/c/KWikzXQL
https://arxiv.org/abs/1706.03762


sults, including ensembles, by over 2 BLEU. On theWMT 2014 English-to-
French translation task, our model establishes a new single-model state-
of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a
small fraction of the training costs of the bestmodels from the literature.
We show that the Transformer generalizeswell to other tasks by applying
it successfully to English constituency parsing bothwith large and limited
training data.

1 Introduction

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neu-
ral networks in particular, have been firmly established as state of the art approaches in
sequence modeling and transduction problems such as language modeling and machine
translation [35, 2, 5]. Numerous efforts have since continued to push the boundaries of
recurrent language models and encoder-decoder architectures [38, 24, 15].

Recurrent models typically factor computation along the symbol positions of the input
and output sequences. Aligning the positions to steps in computation time, they gener-
ate a sequence of hidden states ht, as a function of the previous hidden state ht−1 and
the input for position t. This inherently sequential nature precludes parallelizationwithin
training examples, which becomes critical at longer sequence lengths, as memory con-
straints limit batching across examples. Recent work has achieved significant improve-
ments in computational efficiency through factorization tricks [21] and conditional com-
putation [32], while also improving model performance in case of the latter. The funda-
mental constraint of sequential computation, however, remains.

Attention mechanisms have become an integral part of compelling sequence modeling
and transduction models in various tasks, allowing modeling of dependencies without
regard to their distance in the input or output sequences [2, 19]. In all but a few cases [27],
however, such attention mechanisms are used in conjunction with a recurrent network.

In this workwe propose the Transformer, amodel architecture eschewing recurrence and
instead relyingentirely onanattentionmechanism todrawglobal dependencies between
input and output. The Transformer allows for significantly more parallelization and can
reach a new state of the art in translation quality after being trained for as little as twelve
hours on eight P100 GPUs.

2 Background

The goal of reducing sequential computation also forms the foundation of the Extended
Neural GPU [16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural net-
works as basic building block, computing hidden representations in parallel for all input
and output positions. In these models, the number of operations required to relate sig-
nals from twoarbitrary input or output positions grows in thedistancebetweenpositions,
linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn
dependencies between distant positions [12]. In the Transformer this is reduced to a con-
stant number of operations, albeit at the cost of reduced effective resolution due to aver-
aging attention-weighted positions, an effect we counteract with Multi-Head Attention
as described in section 3.2.

Self-attention, sometimes called intra-attention is an attentionmechanism relatingdiffer-
ent positions of a single sequence in order to compute a representation of the sequence.
Self-attention has been used successfully in a variety of tasks including reading compre-
hension, abstractive summarization, textual entailment and learning task-independent
sentence representations [4, 27, 28, 22].

End-to-end memory networks are based on a recurrent attention mechanism instead of
sequence-aligned recurrence and have been shown to perform well on simple-language
question answering and language modeling tasks [34].

2



Figure 1: The Transformer - model architecture.

To the best of our knowledge, however, the Transformer is the first transduction model
relying entirely on self-attention to compute representations of its input and outputwith-
out using sequence-aligned RNNs or convolution. In the following sections, we will de-
scribe the Transformer, motivate self-attention and discuss its advantages over models
such as [17, 18] and [9].

3 Model Architecture

Most competitive neural sequence transduction models have an encoder-decoder struc-
ture [5, 2, 35]. Here, the encoder maps an input sequence of symbol representations
(x1, ..., xn) to a sequence of continuous representations z = (z1, ..., zn). Given z, the de-
coder then generates an output sequence (y1, ..., ym) of symbols one element at a time.
At each step the model is auto-regressive [10], consuming the previously generated sym-
bols as additional input when generating the next.

The Transformer follows this overall architecture using stacked self-attention and point-
wise, fully connected layers for both the encoder and decoder, shown in the left and right
halves of Figure 1, respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has
two sub-layers. The first is a multi-head self-attention mechanism, and the second is a
simple, position-wise fully connected feed-forward network. We employ a residual con-
nection [11] around each of the two sub-layers, followed by layer normalization [1]. That

3



is, the output of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the
function implemented by the sub-layer itself. To facilitate these residual connections, all
sub-layers in the model, as well as the embedding layers, produce outputs of dimension
dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addi-
tion to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer,
which performs multi-head attention over the output of the encoder stack. Similar to
the encoder, we employ residual connections around each of the sub-layers, followed by
layer normalization. We also modify the self-attention sub-layer in the decoder stack to
prevent positions from attending to subsequent positions. This masking, combined with
fact that the output embeddings are offset by one position, ensures that the predictions
for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors. The output is
computed as a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention ”Scaled Dot-Product Attention” (Figure 2). The input con-
sists of queries and keys of dimension dk, and values of dimension dv . We compute the
dot products of the query with all keys, divide each by

√
dk, and apply a softmax function

to obtain the weights on the values.

In practice, we compute the attention function on a set of queries simultaneously, packed
together into a matrix Q. The keys and values are also packed together into matrices K
and V . We compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-
product (multiplicative) attention. Dot-product attention is identical to our algorithm,
except for the scaling factor of 1√

dk
. Additive attention computes the compatibility func-

tion using a feed-forward network with a single hidden layer. While the two are similar in
theoretical complexity, dot-product attention is much faster and more space-efficient in
practice, since it can be implemented using highly optimized matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention
outperforms dot product attentionwithout scaling for larger values of dk [3]. We suspect
that for large values of dk, the dot products grow large inmagnitude, pushing the softmax
function into regions where it has extremely small gradients 4. To counteract this effect,
we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Insteadof performing a single attention functionwith dmodel-dimensional keys, values and
queries, we found it beneficial to linearly project the queries, keys and values h timeswith
different, learned linear projections to dk, dk and dv dimensions, respectively. On each
of these projected versions of queries, keys and values we then perform the attention

4To illustrate why the dot products get large, assume that the components of q and k are inde-
pendent random variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki,

has mean 0 and variance dk.

4



Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel.

function in parallel, yielding dv-dimensional output values. These are concatenated and
once again projected, resulting in the final values, as depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions. With a single attention head, averaging
inhibits this.

MultiHead(Q,K, V ) = Concat(head1, ...,headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dv andWO ∈ Rhdv×dmodel .

In this work we employ h = 8 parallel attention layers, or heads. For each of these we
use dk = dv = dmodel/h = 64. Due to the reduced dimension of each head, the total
computational cost is similar to that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

• In ”encoder-decoder attention” layers, the queries come from the previous de-
coder layer, and the memory keys and values come from the output of the en-
coder. This allows every position in the decoder to attend over all positions in the
input sequence. This mimics the typical encoder-decoder attention mechanisms
in sequence-to-sequence models such as [38, 2, 9].

• The encoder contains self-attention layers. In a self-attention layer all of the keys,
values and queries come from the same place, in this case, the output of the pre-
vious layer in the encoder. Each position in the encoder can attend to all positions
in the previous layer of the encoder.

• Similarly, self-attention layers in the decoder allow each position in the decoder
to attend to all positions in the decoder up to and including that position. We
need to prevent leftward information flow in the decoder to preserve the auto-
regressive property. We implement this inside of scaled dot-product attention

5



by masking out (setting to −∞) all values in the input of the softmax which cor-
respond to illegal connections. See Figure 2.

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains
a fully connected feed-forward network, which is applied to each position separately and
identically. This consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

While the linear transformations are the same across different positions, they use differ-
ent parameters from layer to layer. Another way of describing this is as two convolutions
with kernel size 1. The dimensionality of input and output is dmodel = 512, and the inner-
layer has dimensionality dff = 2048.

3.4 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert
the input tokens and output tokens to vectors of dimension dmodel. We also use the usual
learned linear transformation and softmax function to convert the decoder output to pre-
dicted next-token probabilities. In our model, we share the same weight matrix between
the two embedding layers and the pre-softmax linear transformation, similar to [30]. In
the embedding layers, we multiply those weights by

√
dmodel.

3.5 Positional Encoding

Since our model contains no recurrence and no convolution, in order for the model to
make use of the order of the sequence, we must inject some information about the rela-
tive or absolute position of the tokens in the sequence. To this end, we add ”positional
encodings” to the input embeddings at the bottoms of the encoder and decoder stacks.
The positional encodings have the same dimension dmodel as the embeddings, so that the
two can be summed. There are many choices of positional encodings, learned and fixed
[9].

In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension. That is, each dimension of the positional
encoding corresponds to a sinusoid. Thewavelengths form a geometric progression from
2π to 10000·2π. We chose this function becausewehypothesized itwould allow themodel
to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be
represented as a linear function of PEpos.

We also experimented with using learned positional embeddings [9] instead, and found
that the two versions produced nearly identical results (see Table 3 row (E)). We chose
the sinusoidal version because itmay allow themodel to extrapolate to sequence lengths
longer than the ones encountered during training.

4 Why Self-Attention

In this section we compare various aspects of self-attention layers to the recurrent and
convolutional layers commonly used formappingone variable-length sequenceof symbol
representations (x1, ..., xn) to another sequence of equal length (z1, ..., zn), with xi, zi ∈

6



Table 1: Maximum path lengths, per-layer complexity and minimum number of sequen-
tial operations for different layer types. n is the sequence length, d is the representation
dimension, k is the kernel size of convolutions and r the size of the neighborhood in re-
stricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

Rd, such as a hidden layer in a typical sequence transduction encoder or decoder. Moti-
vating our use of self-attention we consider three desiderata.

One is the total computational complexity per layer. Another is the amount of computa-
tion that can be parallelized, as measured by the minimum number of sequential opera-
tions required.

The third is the path length between long-range dependencies in the network. Learning
long-range dependencies is a key challenge in many sequence transduction tasks. One
key factor affecting the ability to learn such dependencies is the length of the paths for-
ward and backward signals have to traverse in the network. The shorter these paths be-
tween any combination of positions in the input and output sequences, the easier it is to
learn long-range dependencies [12]. Hence we also compare the maximum path length
between any two input and output positions in networks composed of the different layer
types.

As noted in Table 1, a self-attention layer connects all positions with a constant number
of sequentially executed operations, whereas a recurrent layer requires O(n) sequential
operations. In terms of computational complexity, self-attention layers are faster than re-
current layers when the sequence length n is smaller than the representation dimension-
ality d, which is most often the case with sentence representations used by state-of-the-
art models in machine translations, such as word-piece [38] and byte-pair [31] represen-
tations. To improve computational performance for tasks involving very long sequences,
self-attention could be restricted to considering only a neighborhood of size r in the in-
put sequence centered around the respective output position. This would increase the
maximum path length to O(n/r). We plan to investigate this approach further in future
work.

A single convolutional layerwith kernelwidth k < ndoes not connect all pairs of input and
output positions. Doing so requires a stack of O(n/k) convolutional layers in the case of
contiguous kernels, or O(logk(n)) in the case of dilated convolutions [18], increasing the
length of the longest paths between any two positions in the network. Convolutional
layers are generally more expensive than recurrent layers, by a factor of k. Separable
convolutions [6], however, decrease the complexity considerably, to O(k · n · d + n · d2).
Even with k = n, however, the complexity of a separable convolution is equal to the com-
bination of a self-attention layer and a point-wise feed-forward layer, the approach we
take in our model.

As side benefit, self-attention could yield more interpretable models. We inspect atten-
tiondistributions fromourmodels andpresent anddiscuss examples in theappendix. Not
only do individual attention heads clearly learn to perform different tasks, many appear
to exhibit behavior related to the syntactic and semantic structure of the sentences.

5 Training

This section describes the training regime for our models.

7



5.1 Training Data and Batching

We trained on the standard WMT 2014 English-German dataset consisting of about 4.5
million sentence pairs. Sentences were encoded using byte-pair encoding [3], which has
a shared source-target vocabulary of about 37000 tokens. For English-French, we used
the significantly larger WMT 2014 English-French dataset consisting of 36M sentences
and split tokens into a 32000 word-piece vocabulary [38]. Sentence pairs were batched
together by approximate sequence length. Each training batch contained a set of sen-
tence pairs containing approximately 25000 source tokens and 25000 target tokens.

5.2 Hardware and Schedule

We trained ourmodels on onemachinewith 8NVIDIA P100GPUs. For our basemodels us-
ing the hyperparameters described throughout the paper, each training step took about
0.4 seconds. We trained the basemodels for a total of 100,000 steps or 12 hours. For our
big models,(described on the bottom line of table 3), step time was 1.0 seconds. The big
models were trained for 300,000 steps (3.5 days).

5.3 Optimizer

We used the Adam optimizer [20] with β1 = 0.9, β2 = 0.98 and ϵ = 10−9. We varied the
learning rate over the course of training, according to the formula:

lrate = d−0.5
model ·min(step_num−0.5, step_num · warmup_steps−1.5) (3)

This corresponds to increasing the learning rate linearly for the first warmup_steps train-
ing steps, and decreasing it thereafter proportionally to the inverse square root of the
step number. We used warmup_steps = 4000.

5.4 Regularization

We employ three types of regularization during training:

Residual Dropout We apply dropout [33] to the output of each sub-layer, before it is
added to the sub-layer input and normalized. In addition, we apply dropout to the sums
of the embeddings and the positional encodings in both the encoder and decoder stacks.
For the base model, we use a rate of Pdrop = 0.1.

Label Smoothing During training, we employed label smoothing of value ϵls = 0.1 [36].
This hurts perplexity, as the model learns to be more unsure, but improves accuracy and
BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Trans-
former (big) in Table 2) outperforms the best previously reported models (including en-
sembles) by more than 2.0 BLEU, establishing a new state-of-the-art BLEU score of 28.4.
The configuration of this model is listed in the bottom line of Table 3. Training took 3.5
days on 8 P100 GPUs. Even our basemodel surpasses all previously publishedmodels and
ensembles, at a fraction of the training cost of any of the competitive models.

On theWMT2014English-to-French translation task, our bigmodel achieves aBLEU score
of 41.0, outperforming all of the previously published single models, at less than 1/4 the
training cost of the previous state-of-the-art model. The Transformer (big) model trained
for English-to-French used dropout rate Pdrop = 0.1, instead of 0.3.

8



Table 2: The Transformer achieves better BLEU scores than previous state-of-the-artmod-
els on the English-to-German and English-to-French newstest2014 tests at a fraction of
the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 · 1020
GNMT + RL [38] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [9] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [32] 26.03 40.56 2.0 · 1019 1.2 · 1020

Deep-Att + PosUnk Ensemble [39] 40.4 8.0 · 1020
GNMT + RL Ensemble [38] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [9] 26.36 41.29 7.7 · 1019 1.2 · 1021

Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.8 2.3 · 1019

For the basemodels, we used a singlemodel obtainedby averaging the last 5 checkpoints,
which were written at 10-minute intervals. For the big models, we averaged the last 20
checkpoints. We used beam search with a beam size of 4 and length penalty α = 0.6 [38].
These hyperparameters were chosen after experimentation on the development set. We
set themaximumoutput length during inference to input length + 50, but terminate early
when possible [38].

Table 2 summarizes our results and compares our translation quality and training costs to
other model architectures from the literature. We estimate the number of floating point
operations used to train a model by multiplying the training time, the number of GPUs
used, and an estimate of the sustained single-precision floating-point capacity of each
GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied
our base model in different ways, measuring the change in performance on English-to-
German translation on the development set, newstest2013. We used beam search as
described in the previous section, but no checkpoint averaging. We present these results
in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and
value dimensions, keeping the amount of computation constant, as described in Section
3.2.2. While single-head attention is 0.9 BLEU worse than the best setting, quality also
drops off with too many heads.

In Table 3 rows (B), we observe that reducing the attention key size dk hurts model qual-
ity. This suggests that determining compatibility is not easy and that amore sophisticated
compatibility function than dot productmay be beneficial. We further observe in rows (C)
and (D) that, as expected, bigger models are better, and dropout is very helpful in avoid-
ing over-fitting. In row (E) we replace our sinusoidal positional encoding with learned
positional embeddings [9], and observe nearly identical results to the base model.

6.3 English Constituency Parsing

To evaluate if the Transformer can generalize to other tasks we performed experiments
on English constituency parsing. This task presents specific challenges: the output is sub-
ject to strong structural constraints and is significantly longer than the input. Further-

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

9



Table 3: Variations on the Transformer architecture. Unlisted values are identical to those
of the basemodel. All metrics are on the English-to-German translation development set,
newstest2013. Listed perplexities are per-wordpiece, according to our byte-pair encod-
ing, and should not be compared to per-word perplexities.

N dmodel dff h dk dv Pdrop ϵls
train PPL BLEU params
steps (dev) (dev) ×106

base 6 512 2048 8 64 64 0.1 0.1 100K 4.92 25.8 65

(A)

1 512 512 5.29 24.9
4 128 128 5.00 25.5
16 32 32 4.91 25.8
32 16 16 5.01 25.4

(B) 16 5.16 25.1 58
32 5.01 25.4 60

(C)

2 6.11 23.7 36
4 5.19 25.3 50
8 4.88 25.5 80

256 32 32 5.75 24.5 28
1024 128 128 4.66 26.0 168

1024 5.12 25.4 53
4096 4.75 26.2 90

(D)

0.0 5.77 24.6
0.2 4.95 25.5

0.0 4.67 25.3
0.2 5.47 25.7

(E) positional embedding instead of sinusoids 4.92 25.7
big 6 1024 4096 16 0.3 300K 4.33 26.4 213

Table 4: The Transformer generalizes well to English constituency parsing (Results are on
Section 23 of WSJ)

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] WSJ only, discriminative 88.3

Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 91.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 91.3

Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1

Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3

more, RNN sequence-to-sequence models have not been able to attain state-of-the-art
results in small-data regimes [37].

We trained a 4-layer transformer with dmodel = 1024 on the Wall Street Journal (WSJ)
portion of the Penn Treebank [25], about 40K training sentences. We also trained it in
a semi-supervised setting, using the larger high-confidence and BerkleyParser corpora
from with approximately 17M sentences [37]. We used a vocabulary of 16K tokens for
the WSJ only setting and a vocabulary of 32K tokens for the semi-supervised setting.

We performed only a small number of experiments to select the dropout, both attention
and residual (section5.4), learning rates andbeamsizeon theSection22development set,

10



all other parameters remained unchanged from the English-to-German base translation
model. During inference, we increased themaximum output length to input length + 300.
We used a beam size of 21 and α = 0.3 for bothWSJ only and the semi-supervised setting.

Our results in Table 4 show that despite the lack of task-specific tuning our model per-
forms surprisingly well, yielding better results than all previously reported models with
the exception of the Recurrent Neural Network Grammar [8].

In contrast to RNN sequence-to-sequencemodels [37], the Transformer outperforms the
BerkeleyParser [29] even when training only on the WSJ training set of 40K sentences.

7 Conclusion

In this work, we presented the Transformer, the first sequence transductionmodel based
entirely on attention, replacing the recurrent layers most commonly used in encoder-
decoder architectures with multi-headed self-attention.

For translation tasks, the Transformer can be trained significantly faster than architec-
tures based on recurrent or convolutional layers. On both WMT 2014 English-to-German
and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In
the former task our best model outperforms even all previously reported ensembles.

We are excited about the future of attention-based models and plan to apply them to
other tasks. We plan to extend the Transformer to problems involving input and output
modalities other than text and to investigate local, restricted attention mechanisms to
efficiently handle large inputs and outputs such as images, audio and video. Making gen-
eration less sequential is another research goals of ours.

The code we used to train and evaluate our models is available at https://github.com/
tensorflow/tensor2tensor.

Acknowledgements We are grateful to Nal Kalchbrenner and Stephan Gouws for their
fruitful comments, corrections and inspiration.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration
of neural machine translation architectures. CoRR, abs/1703.03906, 2017.

[4] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. arXiv preprint arXiv:1601.06733, 2016.

[5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[6] Francois Chollet. Xception: Deep learning with depthwise separable convolutions.
arXiv preprint arXiv:1610.02357, 2016.

[7] Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empiri-
cal evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

[8] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent
neural network grammars. In Proc. of NAACL, 2016.

11

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor


[9] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and YannN. Dauphin. Con-
volutional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2, 2017.

[10] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[12] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-termmemory. Neural compu-
tation, 9(8):1735–1780, 1997.

[14] Zhongqiang Huang andMary Harper. Self-training PCFG grammars with latent anno-
tations across languages. InProceedings of the 2009Conference onEmpiricalMethods
in Natural Language Processing, pages 832–841. ACL, August 2009.

[15] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Ex-
ploring the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

[16] Łukasz Kaiser and Samy Bengio. Can active memory replace attention? In Advances
in Neural Information Processing Systems, (NIPS), 2016.

[17] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In International
Conference on Learning Representations (ICLR), 2016.

[18] Nal Kalchbrenner, LasseEspeholt, KarenSimonyan, AaronvandenOord, AlexGraves,
and Koray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint
arXiv:1610.10099v2, 2017.

[19] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention
networks. In International Conference on Learning Representations, 2017.

[20] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR, 2015.

[21] Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for LSTM networks. arXiv
preprint arXiv:1703.10722, 2017.

[22] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv
preprint arXiv:1703.03130, 2017.

[23] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-
task sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015.

[24] Minh-Thang Luong, Hieu Pham, and Christopher DManning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[25] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

[26] DavidMcClosky, EugeneCharniak, andMark Johnson. Effective self-training for pars-
ing. InProceedings of theHuman Language TechnologyConference of theNAACL,Main
Conference, pages 152–159. ACL, June 2006.

[27] Ankur Parikh, Oscar Täckström, Dipanjan Das, and JakobUszkoreit. A decomposable
attention model. In Empirical Methods in Natural Language Processing, 2016.

[28] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for
abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.

12



[29] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, com-
pact, and interpretable tree annotation. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 433–
440. ACL, July 2006.

[30] Ofir Press and Lior Wolf. Using the output embedding to improve language models.
arXiv preprint arXiv:1608.05859, 2016.

[31] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[32] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[33] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[34] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end
memory networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 28, pages 2440–
2448. Curran Associates, Inc., 2015.

[35] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems, pages 3104–
3112, 2014.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015.

[37] Vinyals & Kaiser, Koo, Petrov, Sutskever, and Hinton. Grammar as a foreign language.
In Advances in Neural Information Processing Systems, 2015.

[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[39] Jie Zhou, Ying Cao, XuguangWang, Peng Li, andWei Xu. Deep recurrentmodelswith
fast-forward connections for neural machine translation. CoRR, abs/1606.04199,
2016.

[40] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accu-
rate shift-reduce constituent parsing. In Proceedings of the 51st Annual Meeting of
the ACL (Volume 1: Long Papers), pages 434–443. ACL, August 2013.

13



Attention VisualizationsInput-Input Layer5

It is in th
is

sp
iri

t
th

at
a m

aj
or

ity
of A

m
er

ic
an

go
ve

rn
m

en
ts

ha
ve

pa
ss

ed
ne

w
la

w
s

si
nc

e
20

09
m

ak
in

g
th

e
re

gi
st

ra
tio

n
or vo

tin
g

pr
oc

es
s

m
or

e
di

ffi
cu

lt
. <E

O
S

>
<p

ad
>

<p
ad

>
<p

ad
>

<p
ad

>
<p

ad
>

<p
ad

>

It is in
th

is
sp

iri
t

th
at a

m
aj

or
ity of

A
m

er
ic

an
go

ve
rn

m
en

ts
ha

ve
pa

ss
ed

ne
w

la
w

s
si

nc
e

20
09

m
ak

in
g

th
e

re
gi

st
ra

tio
n or

vo
tin

g
pr

oc
es

s
m

or
e

di
ffi

cu
lt .

<E
O

S
>

<p
ad

>
<p

ad
>

<p
ad

>
<p

ad
>

<p
ad

>
<p

ad
>

Figure 3: An example of the attention mechanism following long-distance dependencies
in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a
distant dependency of the verb ‘making’, completing the phrase ‘making...more difficult’.
Attentions here shown only for the word ‘making’. Different colors represent different
heads. Best viewed in color.

14



Input-Input Layer5
Th

e
La

w
w

ill
ne

ve
r

be pe
rfe

ct
, bu

t
its ap

pl
ic

at
io

n
sh

ou
ld

be ju
st

- th
is

is w
ha

t
w

e
ar

e
m

is
si

ng
, in m

y
op

in
io

n
. <E

O
S

>
<p

ad
>

Th
e

La
w

w
ill

ne
ve

r
be

pe
rfe

ct ,
bu

t
its

ap
pl

ic
at

io
n

sh
ou

ld be ju
st -

th
is is

w
ha

t
w

e
ar

e
m

is
si

ng
, in m
y

op
in

io
n .

<E
O

S
>

<p
ad

>

Input-Input Layer5

Th
e

La
w

w
ill

ne
ve

r
be pe

rfe
ct

, bu
t

its ap
pl

ic
at

io
n

sh
ou

ld
be ju

st
- th

is
is w

ha
t

w
e

ar
e

m
is

si
ng

, in m
y

op
in

io
n

. <E
O

S
>

<p
ad

>

Th
e

La
w

w
ill

ne
ve

r
be

pe
rfe

ct ,
bu

t
its

ap
pl

ic
at

io
n

sh
ou

ld be ju
st -

th
is is

w
ha

t
w

e
ar

e
m

is
si

ng
, in m
y

op
in

io
n .

<E
O

S
>

<p
ad

>

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora reso-
lution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word
‘its’ for attention heads 5 and 6. Note that the attentions are very sharp for this word.

15



Input-Input Layer5
Th

e
La

w
w

ill
ne

ve
r

be pe
rfe

ct
, bu

t
its ap

pl
ic

at
io

n
sh

ou
ld

be ju
st

- th
is

is w
ha

t
w

e
ar

e
m

is
si

ng
, in m

y
op

in
io

n
. <E

O
S

>
<p

ad
>

Th
e

La
w

w
ill

ne
ve

r
be

pe
rfe

ct ,
bu

t
its

ap
pl

ic
at

io
n

sh
ou

ld be ju
st -

th
is is

w
ha

t
w

e
ar

e
m

is
si

ng
, in m
y

op
in

io
n .

<E
O

S
>

<p
ad

>

Input-Input Layer5

Th
e

La
w

w
ill

ne
ve

r
be pe

rfe
ct

, bu
t

its ap
pl

ic
at

io
n

sh
ou

ld
be ju

st
- th

is
is w

ha
t

w
e

ar
e

m
is

si
ng

, in m
y

op
in

io
n

. <E
O

S
>

<p
ad

>

Th
e

La
w

w
ill

ne
ve

r
be

pe
rfe

ct ,
bu

t
its

ap
pl

ic
at

io
n

sh
ou

ld be ju
st -

th
is is

w
ha

t
w

e
ar

e
m

is
si

ng
, in m
y

op
in

io
n .

<E
O

S
>

<p
ad

>

Figure 5: Many of the attention heads exhibit behaviour that seems related to the struc-
ture of the sentence. We give two such examples above, from two different heads from
the encoder self-attention at layer 5 of 6. The heads clearly learned to perform different
tasks.

16


	Introduction
	Background
	Model Architecture
	Encoder and Decoder Stacks
	Attention
	Scaled Dot-Product Attention
	Multi-Head Attention
	Applications of Attention in our Model

	Position-wise Feed-Forward Networks
	Embeddings and Softmax
	Positional Encoding

	Why Self-Attention
	Training
	Training Data and Batching
	Hardware and Schedule
	Optimizer
	Regularization

	Results
	Machine Translation
	Model Variations
	English Constituency Parsing

	Conclusion

